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Abstract 

A method is summarized for the precise computation of 
the velocity of sound in a real gas and of its variations 
with experimental conditions. Specifically, two problems 
are discussed:  (a) the inclusion of the effects of depar- 
tures of the equation of state from the perfect gas law, 
and (b) the computation of specific heats from spectro- 
scopic data. The method is applied to air and data for 
the computation of the velocity in air, under pressures 
between 720 and 820 mm. Hg, and temperatures between 0° C 
and 30° C, are presented.  These results are summarized in 
the form of correction factors for the reduction to standard 
conditions of velocities measured at various frequencies 
and in this range of pressure and temperature0 
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Computation of the Velocity of Sound in Gases 

| by 

Preston W0 Smith, Jr. 

j 

INTRODUCTION 

The recognized factors which can influence the phase velocity 

for propagation of sound in gases under various experimental con- 

ditions are numerous to a point of annoyance. However, when the 

gas is uniform and unbounded and the temperature, pressure, and 

frequency are not extreme, the situation is considerably simplified. 

The classical expression for the phase velocity of an acous- 

i 
i 

i. tic signal of small amplitude in an unbounded gas is the well- 
1* known expression, 

(*VPo>* • (1) 

where Y is the ratio of specific heats, P is the equilibrium 

pressure, and p is the equilibrium density of the gas. The 

assumptions implicit in this equation are that the gas is "ideal" 

(i.e., the equation of state is the perfect gas law) and that 

the sound disturbance is an isentroplc (reversible adiabatic) 

process. It is usually assumed that Y is independent of the 

experimental conditions § it follows that the velocity should 

vary only as the sauare-root of the absolute temperature. 

In this memorandum- we shall consider the problem of the 

theoretical calculation of the velocity of sound with a pre- 

cision which invalidates some of the preceding assumptions. 

Pirst, a method will be outlined for the incorporation of the        \ 
effe *-.s of the "imperfection" of the gas (i<-e., the departure 

of its experimentally determined equation of state from the 

perfect gas law). Secondly, the means for the computation of 

the specific heat from spectroscopic data will be presented. 

No consideration will be given to the effects upon the velocity 

» 

•All numbered references appear at the end of the report. 
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of the radiation and conduction of heat or the viscosity, 3ince 

these phenomena are of importance only at the extremes of the fre- 

quency scale-  A review of these effects can be found in a recent        , 

paper by Markham, et al*  The results of computations for air 

will be presented. 

From the results of theoretical calculations of this nature, 

measurements of the velocity of sound made under different ex- 

perimental conditions can be corrected for these known effects 

and accurately compared at a common reference condition., 

II 

THEORY 

The distribution of pressure in a sound field in an unbounded 

medium can be shown to be the solution of the wave equation,-^ 

V2p + («2/V2)p - 0, (2) 

where, in lieu of a specified equation of state fir the medium, 

the symbol V stands for the differential quotient, 

V2 = Op/dp). (3) 

In these equations, p is the instantaneous variational pressure, 

p is the instantaneous density of the medium, and *> is the 

angular frequency<>* For generality, V must be considered to be 

a complex number (the complex velocity .Q£ sound) „  However, the 

situations to be considered in this memorandum are limiting or 

asymptotic cases in which V is real$ in that case, it is readily 

recognized as the phase velocity or, more commonly, the velocity 

of sounde 

•The assumptions implicit in the mathematical derivation are: 

a-  the pressure is a scalar point function of the space 
coordinates, 

b<»  there are no sources or sinks of mass in the region, 
Co  the external, or "body," forces on the medium are 

constant, 
d.  the pressure and density disturbances are very small, and 
e=  the time derivative of V2 i3 zero. 
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lo Velocity of Sound In Imperfect Gases 

The differential quotient for the square of the complex 

velocity [Bq (3)3 can be evaluated in terms of fundamental 

tliermodynamic variables from the equation cf state for the gas. 

If the perfect gas law is assumed, one reverts: to Eq, (1), 

The aethcd we will use for evaluating V was apparently 

first developed by van Itterbeek and Keesom for determination 

of the real gas equation of state from sound velocity measure- 
x 6 

ments$ subsequently, both Richards^ and Hardy employed similar 

expressions in the consideration of the invarss problem — that 

with which we are concerned — of prediction of the variations 

of sound velocity from equation-of-state data. 

The treatment proceeds from the fundamental definition, 

[Bq„ (3)3, and by means of standard thermodynamic relationships 

valid for pure subsxancos* arrives at the expression 

v* = (§»>, • -|L(iS>p
2 (4) 

where  P is the total pressure, 

T is the absolute temperature, 

C is the specific heat at constant volume, and v        r » 
H is the molecular weight of the mediun„ 

However, further manipulation is necessary since the spe- 

cific heat of a real gas is not constant; its derivative, 

known from thermodynamics, must be integrated to obtain the 

value of C at the temperature and pressure of interest*  The 

equation then reduces to 

V2 « ^ f 1 + JLLL 
c-¥ + \ 

(5) 

* The term "pure substance" is used here in its thermodynamic 
sense, Keenan in Thermodynamics (Wiley, 19*1) defines it ass 
"A system which is homogeneous in composition and homogeneous 
and invariable in chemical aggregation,, ..." (p* 18),  The re- 
striction is necessary in order to eliminate the complexities 
of phase changes and chemical reactions. 
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where    R is the universal gas constant, 

II is the nolecular weight of V     gas, 

Cvo/R is the ratio of the specnic heat at constant 

volume to the universal gas constant in the limit as 

the pressure approaches zero, and 

f, g, and A are dimensionless functions of the equi- 

librium values of P and T.* ** 

The defining equations for f, g, and A (from which they 

can be evaluated if an equation of state relating P, P, and 

T is known) are? 

f = A %$\ 

The quantities f and g differ only slightly from unity, and A 

from zero, by an amount determined by the imperfection of the 

gas$ for a perfect gas [Eq. (5)] reduces to [Eq. (1)], i.e., 

V2 = (7Po/P0). 

The significance of the individual factors of Eq. (5) can 

be shown to be as follows? 

•In his paper, Hardy (ref. 6. above) used a function, h, re- 
lated to our A by the equations (Cv/R) = h(Cvo/R) = (Cvo/R) + A. 
The difference lies primarily in the fact that, whereas A can 
be evaluated from the equation of state alone, h involves also 
the value of CVo» However, Cvo varies with temperature inde- 
pendently of A$ therefore, the present notation is simpler and 
preferableo 

••The factors f, g, A, and Cyo/H In this equation are all dimen- 
sionless; any consistent set of units can be used in the compu- 
tations leading to their evaluation. The units of the resultant 
figure for the velocity of sound depend wholly on the factor, 
RT/Mr If it is desired that the velocity have the units» 
(cm/sec), it is appropriate to express T in degrees Kelvin, 
H 5.n gram* per mole, and R in ergs per mole • degree. 

• , 
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Ca)  (RTf/M) is the real gas isothermal bulk modulus of 

elasticity?  -v(dP/dv),p, where v is the specific volume. 

(b)  (g/f) is the difference of the specific heats 

divided by the gas constant? (C - C )/B, where C is the 

specific heat at constant pressure. 

(c) A is the increment in the ratio, G /3, from zero 

concentration of the gas to the experimental concentration,, 

Therefore, the quantity, (C /B) • A, is the actual value of 

C /B as defined by the expression? (3U/3T)V/B, where U is the 

internal energy of the medium, 

(d) The whole factor in square brackets in Eq<, (5) is 

therefore the real Y, i»e<>, the ratio of the specific heats 

evaluated at the particular temperature and concentration for 

which f, g, Cvo/R, and A are computed.. 

Of course, any equation'of state which is an accurate 

analytic representation of the P, p, T interdependence can 

b" used to compute these functions, f, g, and As the Beattie- 

Bridgman equation' is one of the best available for this pur- 

pose for substances in vaporous phase<> That equation expresses 

P as a power series in p, the coefficients being functions of 

T$ it involves five constants determined for each gas by a 

process of fitting the various derivatives of the pressure to 

a best match with data measured by various experimenters, ^n 

its general form, the equation can be written 

F = (BT)p + (RTB0~ AQ  ^p
2 + (AQa - BTBQb - —^) p3 

RdB b  . 

where. In the units usually employed, 

P is the absolute pressure in atmospheres, 

B. is the universal gas constant (atmosphere liter/mole 

(7) 

{ degree) 
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T is the absolute temperature (degrees Kelvin), 
p is the molar density (moles/liter), and 
A^ is a constant with units of (atmosphere liter /mole^), o 
^> * i *>*  are constants with units of (liter/mole), and 
d is a constant with units of (degree-3 liter/mole). 

This equation is sometimes conveniently abbreviated in the 
/lrlal form 

P « <xp • 0p2 + Yp^ • op4 (8) 

where the four coefficients (a, {$, Y? 5) are functions of 
temperature and independent of density. 

Expressions for the functions needed in Eq„ (5) for the 
velocity are readily evaluated from these equations as power 
series in p.  In the general case,, 

f = x + 2$ p 4 3* p2 t ±§ 3 
a r  a r   a r  * 

g* - 1 • (B0 • *$)p  • (-B0b + —^)P 
+( f")P3 , C9) 

4}p| l 4-|p.-2-p2 94 
£he following approximate formulas, retaining only the 

first non-"ideal" terms, can h<? verified from the expressions 
given above, 

p -Is » • <-Bo • sf+ *j> fr]       <8*' 

*  -l-2(-B0 + ^ • dj)p 

g/f « 1 • (-s8 • %p (9a) RT  T3 

> 
, 
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In aorae check calculations for oxygen at room temperature and 

atmospheric pressure, the results of the approximate formulas 

differed but slightly from the results of the more accurate 

expressions, The errors were? less than +1 part per million 

in p, 4* parts per thousand in (1-f), -1 part per thousand in 

(g-I), and -1 part per thousand in A. 

2. Evaluation of the Specific Heat 

In order to compute the velocity of sound from Eq. (5) 

it is also iieceaattx'y to obtain an accurate value for the 
it 
|> specific heat at infinite dilution, C ,  It has frequently 

been pointed out that theoretical computations by the meth- 

ods of statistical thermodynamics, with data obtained by 

spectroscopic analysis of molecular spectra, are more accurate 

than direct measurements. However, one must first consider 

the possible differences between the specific heat effective 

at a given sound frequency and that which would obtain in a 

quasi-static process. 

Variation with Frequency 

The definition of the specific heat can be written as 

Cv = (dU/3T)v (10) 

where D is the internal energy of the medium, T is the abso- 

lute temperature, and the subscript v signifies a constant 

volume process.. This process must be envisioned as a periodic 

variation at the frequency of the sound wave. Now the internal 

energy consists of both translational energy and energy associ- 

ated with the various "excited" (rotational and vibrational) ) 

states of the molecules.  In an equilibrium condition a cer- 

tain small fraction of the molecules exists in each excited 

state, the proportions being dependent on temperature.  The | 

periodic variational temperature resulting from a sound wave 

will, therefore, cause a periodic variation of the proportions 

of the excited molecules^ A.e.j a periodic variation in the 

internal energy associated with the excited states-  This 
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energy is In addition to the translational energy and is 

therefore seen to modify the effective specific heat. How- 

ever, the adjustment in the proportions of molecules in the 

various states is net instantaneous^ it can be shown that 

there is a "time constant" associated with the response 

mechanism which introduces a phase difference between the 
temperature variations and the resultant energy variation. 

Therefore the effective specific heat, C , and the velocity, 

V, will each be complex.  In two cases, C and V will be 

reals first, wnen the sound frequency is very low and the 

gas can be considered to be moving through equilibrium states 

only$ secondly, when the sound frequency is so very high 

that there is no time for an adjustment in the proportions 

of molecules in the various states. Between these two limit- 

ing cases, the effective specific heat will have decreased by 

an amount equal to the contribution of the energy in the 

excited states to the quasi-static specific heats the velocity 

will have increased correspondingly. 

In the general case it is found that the transition for 

all the states in any one "degree of freedom" occurs at a 

single characteristic frequency, although these frequencies 

may be (and usually are) different for different degrees of 
Q 

freedom.  The picture that develops is the following. The 

quasi-static specific heat (that effective at zero frequency) 

includes terms attributable to each of the translational, 

vibrational, rotational, and electronic degrees of freedom 

of the molecules. As the frequency increases, these terms 

successively drop out from the effective specific heat. Thus 

the velocity should increase in a sequence of steps. A careful 

analysis shows that the velocity makes a smooth transition 

between these steps, but at frequencies far from the transition 

region tfte value of the velocity is essentially that of the 

"step." (See Pig. (1).) We shall be concerned here with the 

computation of the values of these steps. Therefore we wish to 
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evaluate the contribution of each of the degrees of freedom 

to the specific heat* More specifically, only the limiting 

values, as the pressure approaches zero, must be known (see 

Eq= {5))$  thorefore, the gas can be considered an ideal gas 

t 
velocity 

» i i 

i 

frequency —^> 

Fig. 1. Variation of Velocity with Frequency, 

in this section.,  The determination of the transition frequen- 

cies for the various degrees of freedom is an entirely distinct 

problem which is not considered in this memorandum,,  It is, at 

present, approached most readily by the experimental measure- 

ment of the dependence of the velocity and attenuation of 
sound upon frequency. 

Computation from Spectroscoplc Data 

There are a number of papers and books which discuss, in 

varying degrees of completeness and complexity, the computation 

of specific heats of gases from spectroscopic datat however-, it 

is appropriate to summarize here the basic theory and the meth-     •• ! 
i 

ods used in this memorandum*  Since this report is primarily 

concerned with the gaseous mixture, air, attention will be 

centered on ila component gases which are mostly diatomic.  The 

many complications of detail which obtain for polyatomic gases 
o 

and at extremes of temperature are thereby avoided, 
• 

The fundamental theoretical expression for the specific 

heat at constant volume of a pure gas is ! 
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Cv/R = T"
2 d2 -in  f(T)/3(l/T)2. *      (11) 

where f(T) is the partition function. The partition function 

for a gas depends on the temperature and the energy levels of 

the various states of the molecules„  Its analytic expression 

is9 V- ,/2 \    -E./T 
f(I) = AT3/2 /\ pi e     » •       (12) 

where A is a constant independent of temperature, p, is the 
A. U I" 

relative statistical weight of the i  state, and E., is the 

energy (in units of degrees)** of the i  state.  The statis- 

tical weight is the number of distinct configurations of the 

molecule which have the same energy, E., and therefore need 

not be distinguished in the sum for the partition function,, 

It is readily verified from Eqs. (11) and (12) that neither 

the constant multiplier A nor a change in the datum for 

energy (the same change for all states) will affect the value 

of the specific heato 

If the equation (12) is substituted into Eq0 (11), the 

results can be written? 

C./B - (C*rans/R) • (C*nt/*R),       (13) 

where       C*rans/R = T"*2 d2 ^n(T3/2)/3(l/T)2 = 3/2 

Cint/R = T-2 d2 fln'
c/d(l/T)2, 

v 

fint 

•The subscript "o". indicating evaluation at zero concentration, 
has been omitted from C throughout this section, 

••The energy, in degrees, of a particular state can be obtained 
from the corresponding wave number (in ca~l) by multiplication 
by the constant, hc/k where h is Planck's constant, c is the 
speed of light, and k is Boltzmann's constant.  The two units 
are entirely equivalent. 
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The first term, ecual to 3/2, is the contribution of the trans- 
latjonal energy v  the specific heat. The second term measures 
the contribution of the "internal" degrees of freedom or, in the 
terminology used earlier^ of the excited states of the molecule. 
The evaluation of this term is the major concern of this section. 
It is seen that the internal partition functiont  f  , is formally 
determined by the energy levels, B,, and their corresponding weights, 

* p,. These energy levels (in units of the wave number, cm" ) can 
be directly measured spectrcscopLcally from the absorption and 
emission spectra of the gas. It is essential to the systematic 

1 computation of the specific heat, however, that one employ the 
theoretical forms for the differences between successive energy 
levels as determined by quantum mechanics with values of the 
necessary constants determined by a best match with the experi- 
mental spectroscopic data. 

In the usual convention, the total energy of a molecule in a 
given stats is expanded in the form 

E = Ee(e) + \(e,v)  + Er(e,v,J) ,       (14) 

where E (e) is the energy level of the e—- electronic skate of a 
molecule, in the hypothetical case where there is no vibration or 
rotation, E_(e,v) is the additional energy which the molecule 

^\- 4.1- 

would have if it were in the v—- vibratlonal level of the e^ 
electronic state, without rotation, and E (e,v,J) is the energy 
possessed by a molecule in the j—"- rotational level in excess of 
the total energy without rotation.  Furthermore, the statistical 
weight, p19 can be factored into the product of a weight for the 
rotational level, p_(j), and a weight for the electronic state, 
P-(e). ! 

i 
f 

The internal partition function can now be written 

int. V  ,^--Ee(8i  V  -Ve'v)   V" _ ,.. -»r
(«»T»J> 

= ^ pe(e;e -sy-  2_±    e ~T   2^ PrU e   T 

(15) 

e=0 v-0 1=0 
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In many cases, in gases, the couplings between the rotational, 
vibrational, and electronic states are sufficiently small that 
their effects on the partition function can be neglected. Mathe- 
matically, this statement means that if the values of the sums 
xT and s . are relatively independent of the other quantum 
j=0    v^fci 
numbers,* their dependence on those numbers can be neglected. 
This is particularly true when the value of E (or B^) increases 
greatly with the quantum number so that the multiplicative factor 

e     (or £ e ) decreases sharply. 

When couplings between degrees of freedom are negligible? 
their individual contributions to the specific heat can be shown 
[from Eqs. (13) and (15)3 to be independent and additive. Thus 
we can write 

Cv
lnt/R = (Cv

el/R) + (Cv
vib/R) + (Cv

rot/R) ,  (16) 

when the individual terms are to be evaluated bv means of Eq. (11) 
from the partition functions for the individual degrees of freedom: 

fel - p.CO) + Z^ e     e»l 

Ee(e)-Ee(0) 

pe(e) .    * 

Kv(v)-Bv(0) 

f   - 1 • Z-* e     x (17) 
v=l 

frot , Y> 
j=0 

Er(j) 

Pr(J) 

*The identifying index for the electronic state, e, is not prop- 
erly called a quantum number^ that term is being misused here 
in order to simplify the discussion. A further complication 
of nomenclature arises in the case of polyatomic molecules^ 
the sum over v must then be replaced by a double sum since twc 
numbers are necessary to identify a single vibrational state? 
a modal index and the quantum number identifying the level 
within the mode. 
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Methods of computation; 

There are two particularly useful methods for evaluating the 

contributions to the specific heat from these series. The value 

of (C   /R) can be reduced tc the closed form 

Cv
vlb/R = x2/sinh2x , 

where (18) 

x = [E^CD-E^COl/ZT o 

This expression is derived under the fairly accurate assumption 

until the 3ucviwj>.-5iv« vibrational energy levels are evenly spaced 

(the "harmonic vibrator" assumption). However, the expression 

is also a valid approximation, without the harmonic assumption, 

if the temperature is low enough tnat only the lowest two vib- 

rational levels are significantly populated (i.e., if e~  is 

negligible)o Therefore, Eq« (18) is very accurate at room tem- 

perature but is somewhat in error at high temperatures»* 
« 

The most accurate method for evaluating any of the contri- 

butions to (C /R) is computation directly from the series (Eqs. 

(17)) by means of Eq» (11)» The labor is readily adapted to 

machine calculation.  It can be verified that, if the partition 

function has the form 

I 

f = L   Pie *E±/T 
9 

the  contribution tc the specific heat ts12 

C  /R 
V 

t   f w   - 

-•   f2 

(f»)2 

9 

where 

(19) 

f' =L Pi(VT)e 

*This equation is also valid for the contributions of each 
of the vibrational modes of a pixyatomle molecule, if the 
modes can be considered "harmonic vibrators." 

is n 
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"V1 
f» =)a Pi CVT)   6 

This method of calculation must be used to evaluate the contri- 

bution of the rotational degrees of freedom and can be used for 

each of the internal decrees of freedom. 

Formulas for the energy levels and statistical weights 

There remains only the problem of determining the values of 

the energy levels and the statistical weights for the various 

degrees of freedom* As discussed earlier, ws shall use the theo- 

retical formulas determined by quantum mechanics. 

The electronic contribution to the specific heat is vanishing 

small, in the gasos of interest, at all reasonable temperatures 

because of the large values of the differences in energy*levels, 

(E (e)~E (0))o [See Eq, (17).] In oxygen, in which the effect 

is larger than in most gases1  the first electronic state, A, 

above the ground state, ^X9 contributes less than 1 part in 

1C4 for temperatures less than 800°Ko ^ 

The spacing of the energy levels of the vibrational degree 

of freedom can be written approximately as 

Ev(v) - Ey(0) = (we - xeo>e)v - (xecoe) v
2 ,    (20) 

where (o is a wave number (reduced to degrees), and x % a small, 

positive constant included to compensate for the anharmonicity of 

the seccessive energy levels.   The values of to and x are 

tabulated in references on molecular spectra* 

The rotational energy levels, for a nonrigid molecule in the 

v— vibrational level, are given by the equation y 

B_(vj) = Bv j(2
+D + D  J2(J+1)2  ,       (21) 

where 
y-ir + 1 

'v "e 3„ = £L  cr(v + ±) 

-i 

Dy - De • PCV • p 
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Here, tne small factor D corrects tor the effect of the non- 

rigidity of the molecule in rotation, this effect is sometimes 

called "centrifugal stretching„" The small factors a and £ 

correct for the coupling between the vibrational motion and the 

rotation. Were this formula to be used in calculation, the 

partition function for the vibration-rotation levels could not 

be separated into products as in Eq. (15) nor could the contri- 

butions of vibration and rotation to the specific heat be separated 

a3 in Eq* (16). However, since the coupling is small, its effect 

on the specific heat is quite negligible at all but extremely 

high temperatures.  It is therefore sufficient to use Eqe (21)        j 

with v = 0.  The quantities usually tabulated ar^. the constants 

B_ = B„ -(a/2) and a. The various constants are related to 
°   e IS I 

one another by the equations ' j 

De = - 4 Be
3/o>e

2 I 

3/D8 * (u>e/24 Be)(a/Be)
2 + 5 (a/Be) - 8 xQ     ,     (22) 

By these equations, all constants can be determined from the 

tabulated values and the energy levels computed. 

It is still necessary to determine the statistical weights, 

D-(j), for the rotational levels. For the gases of major interest 

in this report, these weights can be written 

PrU) = gj(2J + 1)  , (23) 

where the value of g, is different for odd values or j from that 

for even jfs„ The ratio (g, od(1/Si Pven) 
is a constant for the 

gas.  All the equations necessary for the computation of the rota- 

tional contribution to the specific heat have now be«n summarized.* ** 

•Strictly speaking Eqs. (21) and (23) apply only to singlet elec- 
tronic states such as the^gronnd. stats of N^C^'-  -n tJie ground 
state of 02, the triplet o£9 the energy levels and statistical 
wolghts vary slightly between the three states. Fortunately, this 
distinction is not significant except at very low temperatures^ at 
room temperatures and hither, the ground states of 0£ can be con- 
sidered to be a single degenerate state of weight, 3° 

**It is frequently assumed that,, at room temperature, the rotational 
• 
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Specific Heat of Mixtures of Pure Gases 

The preceding comments have been concerned with the cal- 

culation from spectroscopic data of the specific heat of a pure 

gas at zero concentration, C /R. Since a gas at zero concen- 

tration can be considered to be an ideal gas, the specific heat 

of a mixture can be computed by the usual formula, 

(Cve/R)tot = /Lxi (Cvc/R)i . (24) 

where x, is the mole fraction (part by volume) of the i th 

component; 

states of the molecule are so fully excited that the rotational 
degrees of freedom are behaving entirely classically and that 
the contribution of each to the specific heat, Cv/R. is there- 
fore equal to 1/2, This is strictly true only for the theoretical 
case of a rigid rotator. The calculations performed for this 
report indicate that the effect of centrifugal stretching in- 
creases the value of Cjro*/R for oxygen by two parts per thousand 
at room temperature. The effect increases with increasing tempera- 
ture. 
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III 

COMPUTATIONS AND RESULTS FOR AIR 

1. Computations for Imperfections of Air 

The equation for the square of the velocity of sound in 

an imperfect gas was der^J^d in a previous section.  [See Eq„ (5), 

p0 4.] The effect of th^ imperfection of the gas is contained 

in three functions:  f, g, and A which must be evaluated from the 

equation of stats.  Expressions for the three functions have been 

derived [iiq. (9), P* 6] in terms of the temperature, the density, 

and the five constants A , a, B , b, and d which appear in tha 

Beattie-Bridgman equation of state. 
'. 

The process of computation of these functions reauires some * * 

: 

comments. First it is to be noted that the independent variables 

in Eq. (9), as in the equation of state [Eq. (7)3, are the moLar 

I density and the absolute temperature. Since the measurable quan- 

tities are pressure and temperature, it is necessary first to 

compute the molar density, p„ [by a process of successive approxi- 

mation, using Eq. (7)3 for se'f-jced values of P and T. The unit 

of pressure is the normal atmosphere so that conversion is necessary 

when the measurement is made in millimeters of mercury. Finally 

the values of the universal gas constant, R9 and the ice point, 

T (°K)used by Beattie and Bridgman in the computation of the 

constants A , a, B^, b, and d are R = 0cC8206 atmosphere liter/ 

mole degree and T = 273.13 degrees Kelvin, respectively; these 

figures must, of course, be employed in all further calculation? 

with these five constants, namely, in the determination of the 

values of f, g, and A. However, in Eq. (5) f°? the square of 

the velocity of sound, the absolute temperature appears explicitly; 

here the best contemporary value for the ice point should be used. 
1R The value T = 273.16 degrees Kelvin has been used in this report. 

The values of the uesired functions, f, g, and A, and the ratio 

g./f, can now be calculated from Eq. (9) for any particular gas or 

vapor for which the five constants, A , a, B , b, d, have been 



If 
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TH29 -18- | ! 

determined<-  Mixtures cf these gaset, can also be treated by a 
19 method developed by Beattie, 

I 
Table I presents the result of such calculations of the 

functions f, g/'f, and A, for air in the region: 0 to 30°C, 

720 to 820 mm. Hg- the values  used for the constants of the 

Beattie-Bridgman equation were 

A0 - 1„3012     BQ = 0.04611     d = 4.34 X 10* 

a = O0OI93I     b = -0.01101 

The results contained in Table I, with the knowledge of 

the specific heat, Cvo/R, are sufficient to compute the ratio 

of velocities of sound at different conditions of temperature 

and pressure. However, in order to compute an absolute value 

for sound velocity from these theoretical considerations, it 

is necessary as well [see Eq. (5)3 to know the value of the 

molecular weight, M. M Is not determinable from the equation 

of state alone5* indeed, it never appears therein when the volume 
unit is molar (e, g0,liter/mole).  Tt can, however, be determined 

simply from molar density, p (mole/liter), and the density proper, 

p1 (grams/liter), if both are known at the same experimental 

conditions, for, by definition, p' =p M. Furthermore, the value i 

of the molar density is readily computed from the equation of 

state [Eq. (7)]- Therefore the problem reduces to determining 

the density in grams/liter. 

•I can find no satisfactory answer in the literature to the 
problem of how, from experimental data in which the unit of 
volume was Dres-mably in cgs units (cnw, liter, or specific 
volume units of cm3/gm, liter/gm, or equivalents), the con- 
stants for Eq. (7) could have been determined in molar units 
without simultaneously determining the value either of the 
molecular weight, M, or of the individual gas constant which is 
the ratio R/M=  Indeed, in their first paper, £. Am. Chem. Soc. 
49_, 1665 (1927), Beattie and Bridgman present results for 
ethyl ether and carbon dioxide which give both the values of 
the five constants and the value of the ratio, R/Mj none of 
the other papers do so. 
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Unfortunately, no single value for the density of air can 

be stated for the simple reason that the word "air" comprehends 

a whole class of vaporous mixtures of sensibly different composi- 

tions.  One can even eliminate the well-known variations in the 

proportions of water vapor and carbon dioxide and in the relative 

proportions of 0o and N~ at different altitudes^ there remains 

a fluctuation of density, of approximately *0„0004 gram/liter, 

more or less deDendent on the barometric pressure at the time 
21 the sample was obtained for measurement.   This variation is 

ascribed to changes in the relative proportions of oxygen and 
I 

nitrogen brought about by mass movements of gas within the at- 
* 

mosphere — an atmospheric "stirring" in times of changing 

weather conditions.  (This amount of variation in density causes 

a corresponding variation in the velocity of soui.d of about 

*0.05 m/s.) Perhaps as satisfactory an answer as possible is 

that the density of dry air with 0.03 per cent COp, at sea level, 

{should average (over months) about 1.2930 X 10"" ^ grams/cm-* under 
22  2^ standard conditions of temperature and pressure.  ' 3    Assuming 

this value to be exact, the molecular weight of air, computed 

by the method described above, if II = 28,9'27 grams. 

It must be mentioned, however, that these slight variations 

in composition of "air" and in the molecular weight of the mix- 

ture should not significantly affect the values of the functions 

r, g/f, and A used to correct measurements to standard conditions 

of temperature and pressure. 

2. Computations for Specific Heat of Air 

A summary was given in the last chapter of the methods 

and formulas used to compute the specific heats of pure gases 

and mixtures. We shall present here the values of the experimental 

constants and the results of the computation, 

For the purposes of this section, ai7' is considered to be 

a mixture of four gases mixed in the following proportions by 

volume: 



TM29 -20- 

Np, 78.092$ 02, 20.?p^^ A, 0.93*$ C0p, 0„03#, 

Although some variation in the values of the propcrticr 

thesp gases aonears in the literature, these figures are among 
24 the most recent. 

Two constants are necessarv to evaluate the exponents, 
-1 E/T, from the spectroscopic data given in (cm)  units; the 

values used are: 

absolute temperature of the ice roint;: 

TQ = 273.16°K? 

energy level conversion factor (cm x to deg): 

.he 

The data used for the individual gases follow; 

-h-3. = 1.438337 deg»cm. 

Argon is taken as a monatomic gas with energy of translation 

onlv: C /R = 1.5000, 

.Carbon dioxide is taken as a linear polyatomic molecule with 

full* excited rotational states and only slightly excited higher 

vibrational levels. Precisely, account is taken of the energy 

of the first vibrational levels above the ground state in each 

of four modes for which the energy levels are taken ass 

Ev(£,v)-Ev(0,0> = 9c54, 9.54, 18.9, 33=6 degrees, 
respectively. Equation (1?) is then used to evaluate the ccn- 

25 tribution of each mode to thp specific heat. '    The result need 
not be too accurate since the mole fraction of C0^ in air is 

1 

i 
• 

so small 

Oxygen is treated as a diatomic molecule in a degenerate 

electronic state (3/J« The contribution of the next highest 

electronic state (A) to the specific heat is neglected. The 

small coupling between vibrational and rotational states is 

ignored and the vibrational component of the specific heat was 

computed at 5-degree intervals from 0°C to 30°C by the use of 

Eq, (IB). These data were checked by direct computation from 

the series expansion for the partition function at tenperatures 

T 

'  1 

I  I 
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of 0°C and 20°C$ no significant difference was detected.  The 
rotational specific heat, C r /R, was computed at 0°C9 10°C, 
and 20UC from the appropriate series by Gl-iuque:s method [Eq. (19)3 
The values of 
putations are:' 
The values of the spectroscoplc constants used for these com- 

26 

vibrational contribution: (in -V, electronic state) 

w = 15B4.91 cm"1   , a> x = 11.645 cm"1 e 1 e e 
rotational contribution: (in -*) electronic state; 

Bo " Pe * I * 1"438 crc"1        pr = (2J+1) »  J odd 

a = 0.016 cm =0     ,  j even 
I 

Computations for Nitrogen were made in a manner similar 
to that for oxygen.  The vibrational specific heat, C v /R, 
was computer] at intervals of ?°C from 0°C to 30°C\, using Eq* (18). 
The rotational specific heat, C   /R, was computed at 0°C and 
20°C from the series expansion for the partition function by 
Giauque's method. The values of the parameters used in these 

27 computations are; 
vibrational contribution:       (in ^ electronic state) 

co = 2359 060 cm"1 *>~x~ = 14.44? cm" 
© 6 6 

rotational contribution:        (in X electronic state) 
-1 BQ = Be - £ = 1.992 cm"
1        pr = 2(2j+l) * .1 odd 

o = 0.018 cm"1 = (2J+1),  i  even 

In Table IT, the computed values cf specific heats are 
presented for each gas and for the mixture, air. The specific 
heats for air are also given, omitting the vibrational con- 
tributions of various combinations of the component gases5 
these would be the effective specific heats at various high ofi    ——— 
frequencies.   The few values for specific heats riven by 

29 Hardy  show no significant difference from these results. 
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3« Computed Velocities for Air 

The results of the computations of the previous two sections 

can now be combined and theoretical values computed [by Eq. (5)9 
Pc 4)] for the velocity of soun-i m air and its variations '."lth 

temperature, pressure and frequency. 

The velocity of sound In nir. at the reference conditions 

generally accepted as standard, is thereby computed to be 

331.4f m/a.  These reference conditions are:  temperature, 0 C; 

pressure, 760 mm Hg; proportion of CO*  by volume, 0o03^ humidity, 
zero; frequency, sufficiently low that the specific heat should 

assume its quasi-static value. 

The computed variations of the velocity of sound with temper- 

ature, pressure, and frequency are presented in the accompanying 

figures (Fig. 2) in the form of the fractional correction which 

should be applied to experimental measurements to reduce them to 

reference conditions.  The correction factor given is the amount 

by which the ratiD cf the velocity at reference conditions to 

the velocity at stated conditions exceeds unity* The curves are 

lines of constant correction factor (and therefore of constant 

velocity); they are plotted as functions of temperature and 

pressure. Four charts are eiven representing different fre- 

quency regions.  The four charts in Fig. (2) represent data com- 

puted with effective specific heats for air which omit various 

contributions from the internal degrees of freedom of the com- 

ponent gases.  Thus in Figc (2a) ("Low Frequencies"), no con- 

tribution is omitted; in Fig. (2b) ("Intermediate Frequencies I"), 

the contribution of the vibrational degrees of freedom of Op is 

omitted; in Fig. (2c) ("Intermediate Frequencies II"), the con- 

tributions of the vibrational degrees of freedom of 0« and Np 

are omitted; in Fig. (2d) ("High Frequencies") all vibration 

contributions are omitted and the effective specific heat in- 

cludes only translational and rotational terms. 
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The frequency regions in which the charts are valid are 

those far from the transition frequencies wher« the velocity is 

changing most rapidly.* [See Fig. (1), p. 9-1 Unfortunately 

the transition frequencies are not definitely determined for all 

gases. Knbtzel " has indicated that the transition frequency 

attributable to the vibration.il degree of freedom of Op is not 

above about 40-60 c/s in dry pure OTyger. nr dry *ir^ however he 

was unable to fix its position definitely. Measurements of the 

ratio of specific heats of Op made by Koehler-  at a frequency 

of about 3 c/s tend to indicate tnat that frequency is still some- 

what above the transition^ unfortunately, the experimental probable 
error is too great to allow much dependence upon this deduction. 

Other measurements have not given significant results for dry air.** 

There is no information atout the transition frequency attributable   ! 

to the vibrational degree of freedom of N0. Some of the transition 

frequencies for the three vibrational modes of COp have been 

located. The deformation mode is most important of these and its 

transition frequency (in dry, pure C02) is about 17 kc/s." 

The charts in Fig. (2) have been computed on the assumption 

that the transition frequency for the vibrational degree of 

freedom of HU lies at some unknown point, "X", above that for 0p„ 

Under this assumption. Fig. (2a) is applicable below the transition 

frequency for C~i  which is net higher than 40-60 c/s; Fig. (2b) 

*The numerical value of the term, "far from," depends on the 
desired accuracy. It can be shown from the standard equa- 
tions for the phase velocity in the transition region [V.O. 
Knudsen. £. Acoust. Soc. Am. £, 199 (W?)], that 88 per cent 
of the total change in velocity takes place ir a frequency 
band of two octaves on either side of the trai "ition frequency. 
Such a factor of four in frequency is therefore usually quite 
adequate- 

**0f course, this transition frequency hes been determined in 
noist air and moist oxygen, in which cases it is much higher. 
[See V. C. Esudssn. Is  Acoust. soc, Am, £, 199 (1935)3- How- 
ever, neither the data on the effect of imperfection of the 
gas nor the specific heats apply directly to moist air. 
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